Given the definition of $\tilde\vf$ and since the profunctor composition $\otimes$ is defined by a coend (Linton, 1969), $\vf$ exact is equivalent to the fact that for all $x\in X_0, y\in Y_0$, the maps $\tilde\vf_{x,y}(a)$ induce an isomorphism
$$
\int^a X[x,Sa] \times Y[Ta, y] \overset\cong\to B[Ux, Vy].
$$
Referrers
Bibliography
-
Linton, F. E. J. (1969). An outline of functorial semantics. In B. Eckmann (Ed.), Seminar on Triples and Categorical Homology Theory (pp. 7–52). Springer Berlin Heidelberg.Details