A square $\vf : US \To VT$ is called exact if the map $\tilde\vf : X[\firstblank,S\firstblank] \times Y[T\firstblank, \firstblank] \to B[U\firstblank, V\firstblank]$ is a natural isomorphism.
A square $\vf : US \To VT$ is called exact if the map $\tilde\vf : X[\firstblank,S\firstblank] \times Y[T\firstblank, \firstblank] \to B[U\firstblank, V\firstblank]$ is a natural isomorphism.