Since coends can be computed as colimits (MacLane, 1971), $\vf$ exact is equivalent to the fact that for all $x\in X_0, y\in Y_0$, the maps $\tilde\vf_{x,y}(a)$ induce an isomorphism
$$
\hat\vf_{x,y} : \colim\left( T\downarrow y \to A \xto{X[x,S\firstblank]} \Set \right) \overset\cong\to B[Ux, Vy].
$$
Symmetrically, we obtain the equivalent condition: for all $x\in X_0, y\in Y_0$, the maps $\tilde\vf_{x,y}(a)$ induce an isomorphism
$$
\check\vf_{x,y} : \colim\left( (x\downarrow S)^\op \to A^\op \xto{X[T^\op\firstblank,y]} \Set \right) \overset\cong\to B[Ux, Vy].
$$
Referrers
Bibliography
-
MacLane, S. (1971). Categories for working mathematician (Vol. 5). Springer-Verlag.Details