{-# OPTIONS --cubical-compatible --safe #-}
module Data.Sign.Properties where
open import Algebra.Bundles
open import Data.Empty
open import Data.Sign.Base
open import Data.Product.Base using (_,_)
open import Function.Base using (_$_; id)
open import Function.Definitions using (Injective)
open import Level using (0ℓ)
open import Relation.Binary
using (Decidable; DecidableEquality; Setoid; DecSetoid; IsDecEquivalence)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable using (yes; no)
open import Algebra.Structures {A = Sign} _≡_
open import Algebra.Definitions {A = Sign} _≡_
open import Algebra.Consequences.Propositional
using (selfInverse⇒involutive; selfInverse⇒injective)
infix 4 _≟_
_≟_ : DecidableEquality Sign
- ≟ - = yes refl
- ≟ + = no λ()
+ ≟ - = no λ()
+ ≟ + = yes refl
≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid Sign
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_
≡-isDecEquivalence : IsDecEquivalence _≡_
≡-isDecEquivalence = isDecEquivalence _≟_
opposite-selfInverse : SelfInverse opposite
opposite-selfInverse { - } { + } refl = refl
opposite-selfInverse { + } { - } refl = refl
opposite-involutive : Involutive opposite
opposite-involutive = selfInverse⇒involutive opposite-selfInverse
opposite-injective : Injective _≡_ _≡_ opposite
opposite-injective = selfInverse⇒injective opposite-selfInverse
s≢opposite[s] : ∀ s → s ≢ opposite s
s≢opposite[s] - ()
s≢opposite[s] + ()
s*s≡+ : ∀ s → s * s ≡ +
s*s≡+ + = refl
s*s≡+ - = refl
*-identityˡ : LeftIdentity + _*_
*-identityˡ _ = refl
*-identityʳ : RightIdentity + _*_
*-identityʳ - = refl
*-identityʳ + = refl
*-identity : Identity + _*_
*-identity = *-identityˡ , *-identityʳ
*-comm : Commutative _*_
*-comm + + = refl
*-comm + - = refl
*-comm - + = refl
*-comm - - = refl
*-assoc : Associative _*_
*-assoc + + _ = refl
*-assoc + - _ = refl
*-assoc - + _ = refl
*-assoc - - + = refl
*-assoc - - - = refl
*-cancelʳ-≡ : RightCancellative _*_
*-cancelʳ-≡ _ - - _ = refl
*-cancelʳ-≡ _ - + eq = ⊥-elim (s≢opposite[s] _ $ sym eq)
*-cancelʳ-≡ _ + - eq = ⊥-elim (s≢opposite[s] _ eq)
*-cancelʳ-≡ _ + + _ = refl
*-cancelˡ-≡ : LeftCancellative _*_
*-cancelˡ-≡ - _ _ eq = opposite-injective eq
*-cancelˡ-≡ + _ _ eq = eq
*-cancel-≡ : Cancellative _*_
*-cancel-≡ = *-cancelˡ-≡ , *-cancelʳ-≡
*-inverse : Inverse + id _*_
*-inverse = s*s≡+ , s*s≡+
*-isMagma : IsMagma _*_
*-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _*_
}
*-magma : Magma 0ℓ 0ℓ
*-magma = record
{ isMagma = *-isMagma
}
*-isSemigroup : IsSemigroup _*_
*-isSemigroup = record
{ isMagma = *-isMagma
; assoc = *-assoc
}
*-semigroup : Semigroup 0ℓ 0ℓ
*-semigroup = record
{ isSemigroup = *-isSemigroup
}
*-isCommutativeSemigroup : IsCommutativeSemigroup _*_
*-isCommutativeSemigroup = record
{ isSemigroup = *-isSemigroup
; comm = *-comm
}
*-commutativeSemigroup : CommutativeSemigroup 0ℓ 0ℓ
*-commutativeSemigroup = record
{ isCommutativeSemigroup = *-isCommutativeSemigroup
}
*-isMonoid : IsMonoid _*_ +
*-isMonoid = record
{ isSemigroup = *-isSemigroup
; identity = *-identity
}
*-monoid : Monoid 0ℓ 0ℓ
*-monoid = record
{ isMonoid = *-isMonoid
}
*-isCommutativeMonoid : IsCommutativeMonoid _*_ +
*-isCommutativeMonoid = record
{ isMonoid = *-isMonoid
; comm = *-comm
}
*-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
*-commutativeMonoid = record
{ isCommutativeMonoid = *-isCommutativeMonoid
}
*-isGroup : IsGroup _*_ + id
*-isGroup = record
{ isMonoid = *-isMonoid
; inverse = *-inverse
; ⁻¹-cong = id
}
*-group : Group 0ℓ 0ℓ
*-group = record
{ isGroup = *-isGroup
}
*-isAbelianGroup : IsAbelianGroup _*_ + id
*-isAbelianGroup = record
{ isGroup = *-isGroup
; comm = *-comm
}
*-abelianGroup : AbelianGroup 0ℓ 0ℓ
*-abelianGroup = record
{ isAbelianGroup = *-isAbelianGroup
}
s*opposite[s]≡- : ∀ s → s * opposite s ≡ -
s*opposite[s]≡- + = refl
s*opposite[s]≡- - = refl
opposite[s]*s≡- : ∀ s → opposite s * s ≡ -
opposite[s]*s≡- + = refl
opposite[s]*s≡- - = refl