{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Nullary.Decidable where
open import Level using (Level)
open import Data.Bool.Base using (true; false; if_then_else_)
open import Data.Empty using (⊥-elim)
open import Data.Product.Base using (∃; _,_)
open import Function.Base
open import Function.Bundles using
(Injection; module Injection; module Equivalence; _⇔_; _↔_; mk↔ₛ′)
open import Relation.Binary.Bundles using (Setoid; module Setoid)
open import Relation.Binary.Definitions using (Decidable)
open import Relation.Nullary
open import Relation.Nullary.Reflects using (invert)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl; cong′)
private
variable
a b ℓ₁ ℓ₂ : Level
A B : Set a
open import Relation.Nullary.Decidable.Core public
map : A ⇔ B → Dec A → Dec B
map A⇔B = map′ to from
where open Equivalence A⇔B
via-injection : {S : Setoid a ℓ₁} {T : Setoid b ℓ₂}
(inj : Injection S T) (open Injection inj) →
Decidable Eq₂._≈_ → Decidable Eq₁._≈_
via-injection inj _≟_ x y = map′ injective cong (to x ≟ to y)
where open Injection inj
True-↔ : (a? : Dec A) → Irrelevant A → True a? ↔ A
True-↔ (true because [a]) irr = mk↔ₛ′ (λ _ → invert [a]) _ (irr (invert [a])) cong′
True-↔ (false because ofⁿ ¬a) _ = mk↔ₛ′ (λ ()) (invert (ofⁿ ¬a)) (⊥-elim ∘ ¬a) λ ()
isYes≗does : (a? : Dec A) → isYes a? ≡ does a?
isYes≗does (true because _) = refl
isYes≗does (false because _) = refl
dec-true : (a? : Dec A) → A → does a? ≡ true
dec-true (true because _ ) a = refl
dec-true (false because [¬a]) a = ⊥-elim (invert [¬a] a)
dec-false : (a? : Dec A) → ¬ A → does a? ≡ false
dec-false (false because _ ) ¬a = refl
dec-false (true because [a]) ¬a = ⊥-elim (¬a (invert [a]))
dec-yes : (a? : Dec A) → A → ∃ λ a → a? ≡ yes a
dec-yes a? a with dec-true a? a
dec-yes (yes a′) a | refl = a′ , refl
dec-no : (a? : Dec A) (¬a : ¬ A) → a? ≡ no ¬a
dec-no a? ¬a with dec-false a? ¬a
dec-no (no _) _ | refl = refl
dec-yes-irr : (a? : Dec A) → Irrelevant A → (a : A) → a? ≡ yes a
dec-yes-irr a? irr a with dec-yes a? a
... | a′ , eq rewrite irr a a′ = eq