{-# OPTIONS --cubical-compatible --safe #-}
module Relation.Binary.Bundles where
open import Function.Base using (flip)
open import Level
open import Relation.Nullary.Negation using (¬_)
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import Relation.Binary.Structures
record PartialSetoid a ℓ : Set (suc (a ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set a
_≈_ : Rel Carrier ℓ
isPartialEquivalence : IsPartialEquivalence _≈_
open IsPartialEquivalence isPartialEquivalence public
infix 4 _≉_
_≉_ : Rel Carrier _
x ≉ y = ¬ (x ≈ y)
record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
isEquivalence : IsEquivalence _≈_
open IsEquivalence isEquivalence public
using (refl; reflexive; isPartialEquivalence)
partialSetoid : PartialSetoid c ℓ
partialSetoid = record
{ isPartialEquivalence = isPartialEquivalence
}
open PartialSetoid partialSetoid public
hiding (Carrier; _≈_; isPartialEquivalence)
record DecSetoid c ℓ : Set (suc (c ⊔ ℓ)) where
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
isDecEquivalence : IsDecEquivalence _≈_
open IsDecEquivalence isDecEquivalence public
using (_≟_; isEquivalence)
setoid : Setoid c ℓ
setoid = record
{ isEquivalence = isEquivalence
}
open Setoid setoid public
hiding (Carrier; _≈_; isEquivalence)
record Preorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≲_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≲_ : Rel Carrier ℓ₂
isPreorder : IsPreorder _≈_ _≲_
open IsPreorder isPreorder public
hiding (module Eq)
module Eq where
setoid : Setoid c ℓ₁
setoid = record
{ isEquivalence = isEquivalence
}
open Setoid setoid public
infix 4 _⋦_
_⋦_ : Rel Carrier _
x ⋦ y = ¬ (x ≲ y)
infix 4 _≳_
_≳_ = flip _≲_
infix 4 _⋧_
_⋧_ = flip _⋦_
infix 4 _∼_
_∼_ = _≲_
{-# WARNING_ON_USAGE _∼_
"Warning: _∼_ was deprecated in v2.0.
Please use _≲_ instead. "
#-}
record TotalPreorder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≲_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≲_ : Rel Carrier ℓ₂
isTotalPreorder : IsTotalPreorder _≈_ _≲_
open IsTotalPreorder isTotalPreorder public
using (total; isPreorder)
preorder : Preorder c ℓ₁ ℓ₂
preorder = record
{ isPreorder = isPreorder
}
open Preorder preorder public
hiding (Carrier; _≈_; _≲_; isPreorder)
record Poset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isPartialOrder : IsPartialOrder _≈_ _≤_
open IsPartialOrder isPartialOrder public
using (antisym; isPreorder)
preorder : Preorder c ℓ₁ ℓ₂
preorder = record
{ isPreorder = isPreorder
}
open Preorder preorder public
hiding (Carrier; _≈_; _≲_; isPreorder)
renaming
( _⋦_ to _≰_; _≳_ to _≥_; _⋧_ to _≱_
; ≲-respˡ-≈ to ≤-respˡ-≈
; ≲-respʳ-≈ to ≤-respʳ-≈
; ≲-resp-≈ to ≤-resp-≈
)
record DecPoset c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isDecPartialOrder : IsDecPartialOrder _≈_ _≤_
private module DPO = IsDecPartialOrder isDecPartialOrder
open DPO public
using (_≟_; _≤?_; isPartialOrder)
poset : Poset c ℓ₁ ℓ₂
poset = record
{ isPartialOrder = isPartialOrder
}
open Poset poset public
hiding (Carrier; _≈_; _≤_; isPartialOrder; module Eq)
module Eq where
decSetoid : DecSetoid c ℓ₁
decSetoid = record
{ isDecEquivalence = DPO.Eq.isDecEquivalence
}
open DecSetoid decSetoid public
record StrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _<_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_<_ : Rel Carrier ℓ₂
isStrictPartialOrder : IsStrictPartialOrder _≈_ _<_
open IsStrictPartialOrder isStrictPartialOrder public
hiding (module Eq)
module Eq where
setoid : Setoid c ℓ₁
setoid = record
{ isEquivalence = isEquivalence
}
open Setoid setoid public
infix 4 _≮_
_≮_ : Rel Carrier _
x ≮ y = ¬ (x < y)
infix 4 _>_
_>_ = flip _<_
infix 4 _≯_
_≯_ = flip _≮_
record DecStrictPartialOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _<_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_<_ : Rel Carrier ℓ₂
isDecStrictPartialOrder : IsDecStrictPartialOrder _≈_ _<_
private module DSPO = IsDecStrictPartialOrder isDecStrictPartialOrder
open DSPO public
using (_<?_; _≟_; isStrictPartialOrder)
strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂
strictPartialOrder = record
{ isStrictPartialOrder = isStrictPartialOrder
}
open StrictPartialOrder strictPartialOrder public
hiding (Carrier; _≈_; _<_; isStrictPartialOrder; module Eq)
module Eq where
decSetoid : DecSetoid c ℓ₁
decSetoid = record
{ isDecEquivalence = DSPO.Eq.isDecEquivalence
}
open DecSetoid decSetoid public
record TotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isTotalOrder : IsTotalOrder _≈_ _≤_
open IsTotalOrder isTotalOrder public
using (total; isPartialOrder; isTotalPreorder)
poset : Poset c ℓ₁ ℓ₂
poset = record
{ isPartialOrder = isPartialOrder
}
open Poset poset public
hiding (Carrier; _≈_; _≤_; isPartialOrder)
totalPreorder : TotalPreorder c ℓ₁ ℓ₂
totalPreorder = record
{ isTotalPreorder = isTotalPreorder
}
record DecTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _≤_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_≤_ : Rel Carrier ℓ₂
isDecTotalOrder : IsDecTotalOrder _≈_ _≤_
private module DTO = IsDecTotalOrder isDecTotalOrder
open DTO public
using (_≟_; _≤?_; isTotalOrder; isDecPartialOrder)
totalOrder : TotalOrder c ℓ₁ ℓ₂
totalOrder = record
{ isTotalOrder = isTotalOrder
}
open TotalOrder totalOrder public
hiding (Carrier; _≈_; _≤_; isTotalOrder; module Eq)
decPoset : DecPoset c ℓ₁ ℓ₂
decPoset = record
{ isDecPartialOrder = isDecPartialOrder
}
open DecPoset decPoset public
using (module Eq)
record StrictTotalOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _<_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_<_ : Rel Carrier ℓ₂
isStrictTotalOrder : IsStrictTotalOrder _≈_ _<_
open IsStrictTotalOrder isStrictTotalOrder public
using
( _≟_; _<?_; compare; isStrictPartialOrder
; isDecStrictPartialOrder; isDecEquivalence
)
strictPartialOrder : StrictPartialOrder c ℓ₁ ℓ₂
strictPartialOrder = record
{ isStrictPartialOrder = isStrictPartialOrder
}
open StrictPartialOrder strictPartialOrder public
hiding (Carrier; _≈_; _<_; isStrictPartialOrder; module Eq)
decStrictPartialOrder : DecStrictPartialOrder c ℓ₁ ℓ₂
decStrictPartialOrder = record
{ isDecStrictPartialOrder = isDecStrictPartialOrder
}
open DecStrictPartialOrder decStrictPartialOrder public
using (module Eq)
decSetoid : DecSetoid c ℓ₁
decSetoid = record
{ isDecEquivalence = Eq.isDecEquivalence
}
{-# WARNING_ON_USAGE decSetoid
"Warning: decSetoid was deprecated in v1.3.
Please use Eq.decSetoid instead."
#-}
record DenseLinearOrder c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _<_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_<_ : Rel Carrier ℓ₂
isDenseLinearOrder : IsDenseLinearOrder _≈_ _<_
open IsDenseLinearOrder isDenseLinearOrder public
using (isStrictTotalOrder; dense)
strictTotalOrder : StrictTotalOrder c ℓ₁ ℓ₂
strictTotalOrder = record
{ isStrictTotalOrder = isStrictTotalOrder
}
open StrictTotalOrder strictTotalOrder public
hiding (Carrier; _≈_; _<_; isStrictTotalOrder)
record ApartnessRelation c ℓ₁ ℓ₂ : Set (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) where
infix 4 _≈_ _#_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ₁
_#_ : Rel Carrier ℓ₂
isApartnessRelation : IsApartnessRelation _≈_ _#_
open IsApartnessRelation isApartnessRelation public