------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise equality over lists parameterised by a setoid
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Core using (Op₂)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Definitions using (Transitive; Symmetric; Reflexive; _Respects_)
open import Relation.Binary.Structures using (IsEquivalence)

module Data.List.Relation.Binary.Equality.Setoid {a } (S : Setoid a ) where

open import Data.Fin.Base using (Fin)
open import Data.List.Base
open import Data.List.Relation.Binary.Pointwise as PW using (Pointwise)
open import Data.List.Relation.Unary.Unique.Setoid S using (Unique)
open import Function.Base using (_∘_)
open import Level
open import Relation.Binary.Core renaming (Rel to Rel₂)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Binary.Properties.Setoid S using (≉-resp₂)
open import Relation.Unary as U using (Pred)

open Setoid S renaming (Carrier to A)

private
  variable
    p q : Level

------------------------------------------------------------------------
-- Definition of equality
------------------------------------------------------------------------

infix 4 _≋_

_≋_ : Rel₂ (List A) (a  )
_≋_ = Pointwise _≈_

open PW public
  using ([]; _∷_)

------------------------------------------------------------------------
-- Relational properties
------------------------------------------------------------------------

≋-refl : Reflexive _≋_
≋-refl = PW.refl refl

≋-reflexive : _≡_  _≋_
≋-reflexive P.refl = ≋-refl

≋-sym : Symmetric _≋_
≋-sym = PW.symmetric sym

≋-trans : Transitive _≋_
≋-trans = PW.transitive trans

≋-isEquivalence : IsEquivalence _≋_
≋-isEquivalence = PW.isEquivalence isEquivalence

≋-setoid : Setoid _ _
≋-setoid = PW.setoid S

------------------------------------------------------------------------
-- Relationships to predicates
------------------------------------------------------------------------

open PW public
  using () renaming
  ( Any-resp-Pointwise      to Any-resp-≋
  ; All-resp-Pointwise      to All-resp-≋
  ; AllPairs-resp-Pointwise to AllPairs-resp-≋
  )

Unique-resp-≋ : Unique Respects _≋_
Unique-resp-≋ = AllPairs-resp-≋ ≉-resp₂

------------------------------------------------------------------------
-- List operations
------------------------------------------------------------------------

------------------------------------------------------------------------
-- length

≋-length :  {xs ys}  xs  ys  length xs  length ys
≋-length = PW.Pointwise-length

------------------------------------------------------------------------
-- map

module _ {b ℓ₂} (T : Setoid b ℓ₂) where

  open Setoid T using () renaming (_≈_ to _≈′_)
  private
    _≋′_ = Pointwise _≈′_

  map⁺ :  {f}  f Preserves _≈_  _≈′_ 
          {xs ys}  xs  ys  map f xs ≋′ map f ys
  map⁺ {f} pres xs≋ys = PW.map⁺ f f (PW.map pres xs≋ys)

------------------------------------------------------------------------
-- foldr

foldr⁺ :  {_•_ : Op₂ A} {_◦_ : Op₂ A} 
         (∀ {w x y z}  w  x  y  z  (w  y)  (x  z)) 
          {xs ys e f}  e  f  xs  ys 
         foldr _•_ e xs  foldr _◦_ f ys
foldr⁺ ∙⇔◦ e≈f xs≋ys = PW.foldr⁺ ∙⇔◦ e≈f xs≋ys

------------------------------------------------------------------------
-- _++_

++⁺ :  {ws xs ys zs}  ws  xs  ys  zs  ws ++ ys  xs ++ zs
++⁺ = PW.++⁺

++-cancelˡ :  xs {ys zs}  xs ++ ys  xs ++ zs  ys  zs
++-cancelˡ xs = PW.++-cancelˡ xs

++-cancelʳ :  {xs} ys zs  ys ++ xs  zs ++ xs  ys  zs
++-cancelʳ = PW.++-cancelʳ

------------------------------------------------------------------------
-- concat

concat⁺ :  {xss yss}  Pointwise _≋_ xss yss  concat xss  concat yss
concat⁺ = PW.concat⁺

------------------------------------------------------------------------
-- tabulate

module _ {n} {f g : Fin n  A}
  where

  tabulate⁺ : (∀ i  f i  g i)  tabulate f  tabulate g
  tabulate⁺ = PW.tabulate⁺

  tabulate⁻ : tabulate f  tabulate g  (∀ i  f i  g i)
  tabulate⁻ = PW.tabulate⁻

------------------------------------------------------------------------
-- filter

module _ {P : Pred A p} (P? : U.Decidable P) (resp : P Respects _≈_)
  where

  filter⁺ :  {xs ys}  xs  ys  filter P? xs  filter P? ys
  filter⁺ xs≋ys = PW.filter⁺ P? P? resp (resp  sym) xs≋ys

------------------------------------------------------------------------
-- reverse

ʳ++⁺ : ∀{xs xs′ ys ys′}  xs  xs′  ys  ys′  xs ʳ++ ys  xs′ ʳ++ ys′
ʳ++⁺ = PW.ʳ++⁺

reverse⁺ :  {xs ys}  xs  ys  reverse xs  reverse ys
reverse⁺ = PW.reverse⁺