{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Relation.Binary.Pointwise.Properties where
open import Data.Product.Base using (_,_; uncurry)
open import Data.List.Base using (List; []; _∷_)
open import Level
open import Relation.Binary.Core using (REL; _⇒_)
open import Relation.Binary.Definitions
import Relation.Binary.PropositionalEquality.Core as P
open import Relation.Nullary using (yes; no; _×-dec_)
import Relation.Nullary.Decidable as Dec
open import Data.List.Relation.Binary.Pointwise.Base
private
variable
a b ℓ : Level
A : Set a
B : Set b
R S T : REL A B ℓ
reflexive : R ⇒ S → Pointwise R ⇒ Pointwise S
reflexive = map
refl : Reflexive R → Reflexive (Pointwise R)
refl rfl {[]} = []
refl rfl {x ∷ xs} = rfl ∷ refl rfl
symmetric : Sym R S → Sym (Pointwise R) (Pointwise S)
symmetric sym [] = []
symmetric sym (x∼y ∷ xs∼ys) = sym x∼y ∷ symmetric sym xs∼ys
transitive : Trans R S T →
Trans (Pointwise R) (Pointwise S) (Pointwise T)
transitive trans [] [] = []
transitive trans (x∼y ∷ xs∼ys) (y∼z ∷ ys∼zs) =
trans x∼y y∼z ∷ transitive trans xs∼ys ys∼zs
antisymmetric : Antisym R S T →
Antisym (Pointwise R) (Pointwise S) (Pointwise T)
antisymmetric antisym [] [] = []
antisymmetric antisym (x∼y ∷ xs∼ys) (y∼x ∷ ys∼xs) =
antisym x∼y y∼x ∷ antisymmetric antisym xs∼ys ys∼xs
respʳ : R Respectsʳ S → (Pointwise R) Respectsʳ (Pointwise S)
respʳ resp [] [] = []
respʳ resp (x≈y ∷ xs≈ys) (z∼x ∷ zs∼xs) = resp x≈y z∼x ∷ respʳ resp xs≈ys zs∼xs
respˡ : R Respectsˡ S → (Pointwise R) Respectsˡ (Pointwise S)
respˡ resp [] [] = []
respˡ resp (x≈y ∷ xs≈ys) (x∼z ∷ xs∼zs) = resp x≈y x∼z ∷ respˡ resp xs≈ys xs∼zs
respects₂ : R Respects₂ S → (Pointwise R) Respects₂ (Pointwise S)
respects₂ (rʳ , rˡ) = respʳ rʳ , respˡ rˡ
decidable : Decidable R → Decidable (Pointwise R)
decidable _ [] [] = yes []
decidable _ [] (y ∷ ys) = no λ()
decidable _ (x ∷ xs) [] = no λ()
decidable R? (x ∷ xs) (y ∷ ys) = Dec.map′ (uncurry _∷_) uncons
(R? x y ×-dec decidable R? xs ys)
irrelevant : Irrelevant R → Irrelevant (Pointwise R)
irrelevant irr [] [] = P.refl
irrelevant irr (r ∷ rs) (r₁ ∷ rs₁) =
P.cong₂ _∷_ (irr r r₁) (irrelevant irr rs rs₁)