{-# OPTIONS --cubical-compatible --safe #-}
open import Level
open import Relation.Binary.Core using (_Preserves_⟶_)
open import Relation.Binary.Bundles
open import Relation.Binary.Morphism.Structures
open import Relation.Binary.Consequences using (mono⇒cong)
module Relation.Binary.Morphism.Bundles where
private
variable
ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ ℓ₆ : Level
module _ (S₁ : Setoid ℓ₁ ℓ₂) (S₂ : Setoid ℓ₃ ℓ₄) where
record SetoidHomomorphism : Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where
open Setoid
field
⟦_⟧ : Carrier S₁ → Carrier S₂
isRelHomomorphism : IsRelHomomorphism (_≈_ S₁) (_≈_ S₂) ⟦_⟧
open IsRelHomomorphism isRelHomomorphism public
record SetoidMonomorphism : Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where
open Setoid
field
⟦_⟧ : Carrier S₁ → Carrier S₂
isRelMonomorphism : IsRelMonomorphism (_≈_ S₁) (_≈_ S₂) ⟦_⟧
open IsRelMonomorphism isRelMonomorphism public
homomorphism : SetoidHomomorphism
homomorphism = record { isRelHomomorphism = isHomomorphism }
record SetoidIsomorphism : Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄) where
open Setoid
field
⟦_⟧ : Carrier S₁ → Carrier S₂
isRelIsomorphism : IsRelIsomorphism (_≈_ S₁) (_≈_ S₂) ⟦_⟧
open IsRelIsomorphism isRelIsomorphism public
monomorphism : SetoidMonomorphism
monomorphism = record { isRelMonomorphism = isMonomorphism }
open SetoidMonomorphism monomorphism public
using (homomorphism)
record PreorderHomomorphism (S₁ : Preorder ℓ₁ ℓ₂ ℓ₃)
(S₂ : Preorder ℓ₄ ℓ₅ ℓ₆)
: Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅ ⊔ ℓ₆) where
open Preorder
field
⟦_⟧ : Carrier S₁ → Carrier S₂
isOrderHomomorphism : IsOrderHomomorphism (_≈_ S₁) (_≈_ S₂) (_≲_ S₁) (_≲_ S₂) ⟦_⟧
open IsOrderHomomorphism isOrderHomomorphism public
module _ (P : Poset ℓ₁ ℓ₂ ℓ₃) (Q : Poset ℓ₄ ℓ₅ ℓ₆) where
private
module P = Poset P
module Q = Poset Q
record PosetHomomorphism : Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅ ⊔ ℓ₆) where
field
⟦_⟧ : P.Carrier → Q.Carrier
isOrderHomomorphism : IsOrderHomomorphism P._≈_ Q._≈_ P._≤_ Q._≤_ ⟦_⟧
open IsOrderHomomorphism isOrderHomomorphism public
mkPosetHomo : ∀ f → f Preserves P._≤_ ⟶ Q._≤_ → PosetHomomorphism
mkPosetHomo f mono = record
{ ⟦_⟧ = f
; isOrderHomomorphism = record
{ cong = mono⇒cong P._≈_ Q._≈_ P.Eq.sym P.reflexive Q.antisym mono
; mono = mono
}
}