{-# OPTIONS --cubical-compatible --safe #-}
module Function.Properties.Surjection where
open import Function.Base
open import Function.Definitions
open import Function.Bundles
import Function.Construct.Identity as Identity
import Function.Construct.Composition as Compose
open import Level using (Level)
open import Data.Product.Base using (proj₁; proj₂)
import Relation.Binary.PropositionalEquality as P
open import Relation.Binary.Definitions
open import Relation.Binary.Bundles using (Setoid)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
private
variable
a b c ℓ ℓ₁ ℓ₂ ℓ₃ : Level
A B : Set a
T S : Setoid a ℓ
mkSurjection : (f : Func S T) (open Func f) →
Surjective Eq₁._≈_ Eq₂._≈_ to →
Surjection S T
mkSurjection f surjective = record
{ Func f
; surjective = surjective
}
↠⇒⟶ : A ↠ B → A ⟶ B
↠⇒⟶ = Surjection.function
↠⇒↪ : A ↠ B → B ↪ A
↠⇒↪ s = mk↪ {from = to} λ { P.refl → proj₂ (strictlySurjective _)}
where open Surjection s
↠⇒⇔ : A ↠ B → A ⇔ B
↠⇒⇔ s = mk⇔ to (proj₁ ∘ surjective)
where open Surjection s
refl : Reflexive (Surjection {a} {ℓ})
refl {x = x} = Identity.surjection x
trans : Trans (Surjection {a} {ℓ₁} {b} {ℓ₂})
(Surjection {b} {ℓ₂} {c} {ℓ₃})
(Surjection {a} {ℓ₁} {c} {ℓ₃})
trans = Compose.surjection
injective⇒to⁻-cong : (surj : Surjection S T) →
(open Surjection surj) →
Injective Eq₁._≈_ Eq₂._≈_ to →
Congruent Eq₂._≈_ Eq₁._≈_ to⁻
injective⇒to⁻-cong {T = T} surj injective {x} {y} x≈y = injective $ begin
to (to⁻ x) ≈⟨ to∘to⁻ x ⟩
x ≈⟨ x≈y ⟩
y ≈⟨ to∘to⁻ y ⟨
to (to⁻ y) ∎
where
open SetoidReasoning T
open Surjection surj