{-# OPTIONS --cubical-compatible --safe #-}
module Data.Unit.Properties where
open import Data.Sum.Base
open import Data.Unit.Base
open import Level using (0ℓ)
open import Relation.Nullary
open import Relation.Binary.Bundles
using (Setoid; DecSetoid; Poset; DecTotalOrder)
open import Relation.Binary.Structures
using (IsPreorder; IsPartialOrder; IsTotalOrder; IsDecTotalOrder)
open import Relation.Binary.Definitions using (Decidable; Total; Antisymmetric)
open import Relation.Binary.PropositionalEquality
⊤-irrelevant : Irrelevant ⊤
⊤-irrelevant _ _ = refl
infix 4 _≟_
_≟_ : Decidable {A = ⊤} _≡_
_ ≟ _ = yes refl
≡-setoid : Setoid 0ℓ 0ℓ
≡-setoid = setoid ⊤
≡-decSetoid : DecSetoid 0ℓ 0ℓ
≡-decSetoid = decSetoid _≟_
≡-total : Total {A = ⊤} _≡_
≡-total _ _ = inj₁ refl
≡-antisym : Antisymmetric {A = ⊤} _≡_ _≡_
≡-antisym eq _ = eq
≡-isPreorder : IsPreorder {A = ⊤} _≡_ _≡_
≡-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = λ x → x
; trans = trans
}
≡-isPartialOrder : IsPartialOrder _≡_ _≡_
≡-isPartialOrder = record
{ isPreorder = ≡-isPreorder
; antisym = ≡-antisym
}
≡-isTotalOrder : IsTotalOrder _≡_ _≡_
≡-isTotalOrder = record
{ isPartialOrder = ≡-isPartialOrder
; total = ≡-total
}
≡-isDecTotalOrder : IsDecTotalOrder _≡_ _≡_
≡-isDecTotalOrder = record
{ isTotalOrder = ≡-isTotalOrder
; _≟_ = _≟_
; _≤?_ = _≟_
}
≡-poset : Poset 0ℓ 0ℓ 0ℓ
≡-poset = record
{ isPartialOrder = ≡-isPartialOrder
}
≡-decTotalOrder : DecTotalOrder 0ℓ 0ℓ 0ℓ
≡-decTotalOrder = record
{ isDecTotalOrder = ≡-isDecTotalOrder
}