{-# OPTIONS --cubical-compatible --safe #-}
module Data.Nat.GCD where
open import Data.Nat.Base
open import Data.Nat.Divisibility
open import Data.Nat.DivMod
open import Data.Nat.GCD.Lemmas
open import Data.Nat.Properties
open import Data.Nat.Induction
using (Acc; acc; <′-Rec; <′-recBuilder; <-wellFounded-fast)
open import Data.Product.Base
using (_×_; _,_; proj₂; proj₁; swap; uncurry′; ∃; map)
open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂)
open import Function.Base using (_$_; _∘_)
open import Induction using (build)
open import Induction.Lexicographic using (_⊗_; [_⊗_])
open import Relation.Binary.Definitions using (tri<; tri>; tri≈; Symmetric)
open import Relation.Binary.PropositionalEquality.Core as P
using (_≡_; _≢_; subst; cong)
open import Relation.Binary.PropositionalEquality.Properties
using (module ≡-Reasoning)
open import Relation.Nullary.Decidable using (Dec)
open import Relation.Nullary.Negation using (contradiction)
import Relation.Nullary.Decidable as Dec
open import Algebra.Definitions {A = ℕ} _≡_ as Algebra
using (Associative; Commutative; LeftIdentity; RightIdentity; LeftZero; RightZero; Zero)
gcd′ : ∀ m n → Acc _<_ m → n < m → ℕ
gcd′ m zero _ _ = m
gcd′ m n@(suc _) (acc rec) n<m = gcd′ n (m % n) (rec n<m) (m%n<n m n)
gcd : ℕ → ℕ → ℕ
gcd m n with <-cmp m n
... | tri< m<n _ _ = gcd′ n m (<-wellFounded-fast n) m<n
... | tri≈ _ _ _ = m
... | tri> _ _ n<m = gcd′ m n (<-wellFounded-fast m) n<m
gcd′[m,n]∣m,n : ∀ {m n} rec n<m → gcd′ m n rec n<m ∣ m × gcd′ m n rec n<m ∣ n
gcd′[m,n]∣m,n {m} {zero} rec n<m = ∣-refl , m ∣0
gcd′[m,n]∣m,n {m} {n@(suc _)} (acc rec) n<m
with gcd∣n , gcd∣m%n ← gcd′[m,n]∣m,n (rec n<m) (m%n<n m n)
= ∣n∣m%n⇒∣m gcd∣n gcd∣m%n , gcd∣n
gcd′-greatest : ∀ {m n c} rec n<m → c ∣ m → c ∣ n → c ∣ gcd′ m n rec n<m
gcd′-greatest {m} {zero} rec n<m c∣m c∣n = c∣m
gcd′-greatest {m} {n@(suc _)} (acc rec) n<m c∣m c∣n =
gcd′-greatest (rec n<m) (m%n<n m n) c∣n (%-presˡ-∣ c∣m c∣n)
gcd[m,n]∣m : ∀ m n → gcd m n ∣ m
gcd[m,n]∣m m n with <-cmp m n
... | tri< n<m _ _ = proj₂ (gcd′[m,n]∣m,n {n} {m} _ _)
... | tri≈ _ _ _ = ∣-refl
... | tri> _ _ m<n = proj₁ (gcd′[m,n]∣m,n {m} {n} _ _)
gcd[m,n]∣n : ∀ m n → gcd m n ∣ n
gcd[m,n]∣n m n with <-cmp m n
... | tri< n<m _ _ = proj₁ (gcd′[m,n]∣m,n {n} {m} _ _)
... | tri≈ _ P.refl _ = ∣-refl
... | tri> _ _ m<n = proj₂ (gcd′[m,n]∣m,n {m} {n} _ _)
gcd-greatest : ∀ {m n c} → c ∣ m → c ∣ n → c ∣ gcd m n
gcd-greatest {m} {n} c∣m c∣n with <-cmp m n
... | tri< n<m _ _ = gcd′-greatest _ _ c∣n c∣m
... | tri≈ _ _ _ = c∣m
... | tri> _ _ m<n = gcd′-greatest _ _ c∣m c∣n
gcd[0,0]≡0 : gcd 0 0 ≡ 0
gcd[0,0]≡0 = ∣-antisym (gcd 0 0 ∣0) (gcd-greatest (0 ∣0) (0 ∣0))
gcd[m,n]≢0 : ∀ m n → m ≢ 0 ⊎ n ≢ 0 → gcd m n ≢ 0
gcd[m,n]≢0 m n (inj₁ m≢0) eq = m≢0 (0∣⇒≡0 (subst (_∣ m) eq (gcd[m,n]∣m m n)))
gcd[m,n]≢0 m n (inj₂ n≢0) eq = n≢0 (0∣⇒≡0 (subst (_∣ n) eq (gcd[m,n]∣n m n)))
gcd[m,n]≡0⇒m≡0 : ∀ {m n} → gcd m n ≡ 0 → m ≡ 0
gcd[m,n]≡0⇒m≡0 {zero} {n} eq = P.refl
gcd[m,n]≡0⇒m≡0 {suc m} {n} eq = contradiction eq (gcd[m,n]≢0 (suc m) n (inj₁ λ()))
gcd[m,n]≡0⇒n≡0 : ∀ m {n} → gcd m n ≡ 0 → n ≡ 0
gcd[m,n]≡0⇒n≡0 m {zero} eq = P.refl
gcd[m,n]≡0⇒n≡0 m {suc n} eq = contradiction eq (gcd[m,n]≢0 m (suc n) (inj₂ λ()))
gcd-comm : Commutative gcd
gcd-comm m n = ∣-antisym
(gcd-greatest (gcd[m,n]∣n m n) (gcd[m,n]∣m m n))
(gcd-greatest (gcd[m,n]∣n n m) (gcd[m,n]∣m n m))
gcd-assoc : Associative gcd
gcd-assoc m n p = ∣-antisym
(gcd-greatest gcd[gcd[m,n],p]|m (gcd-greatest gcd[gcd[m,n],p]∣n gcd[gcd[m,n],p]∣p))
(gcd-greatest (gcd-greatest gcd[m,gcd[n,p]]∣m gcd[m,gcd[n,p]]∣n) gcd[m,gcd[n,p]]∣p)
where
open ∣-Reasoning
gcd[gcd[m,n],p]|m = begin
gcd (gcd m n) p ∣⟨ gcd[m,n]∣m (gcd m n) p ⟩
gcd m n ∣⟨ gcd[m,n]∣m m n ⟩
m ∎
gcd[gcd[m,n],p]∣n = begin
gcd (gcd m n) p ∣⟨ gcd[m,n]∣m (gcd m n) p ⟩
gcd m n ∣⟨ gcd[m,n]∣n m n ⟩
n ∎
gcd[gcd[m,n],p]∣p = gcd[m,n]∣n (gcd m n) p
gcd[m,gcd[n,p]]∣m = gcd[m,n]∣m m (gcd n p)
gcd[m,gcd[n,p]]∣n = begin
gcd m (gcd n p) ∣⟨ gcd[m,n]∣n m (gcd n p) ⟩
gcd n p ∣⟨ gcd[m,n]∣m n p ⟩
n ∎
gcd[m,gcd[n,p]]∣p = begin
gcd m (gcd n p) ∣⟨ gcd[m,n]∣n m (gcd n p) ⟩
gcd n p ∣⟨ gcd[m,n]∣n n p ⟩
p ∎
gcd-identityˡ : LeftIdentity 0 gcd
gcd-identityˡ zero = P.refl
gcd-identityˡ (suc _) = P.refl
gcd-identityʳ : RightIdentity 0 gcd
gcd-identityʳ zero = P.refl
gcd-identityʳ (suc _) = P.refl
gcd-identity : Algebra.Identity 0 gcd
gcd-identity = gcd-identityˡ , gcd-identityʳ
gcd-zeroˡ : LeftZero 1 gcd
gcd-zeroˡ n = ∣-antisym gcd[1,n]∣1 1∣gcd[1,n]
where
gcd[1,n]∣1 = gcd[m,n]∣m 1 n
1∣gcd[1,n] = 1∣ gcd 1 n
gcd-zeroʳ : RightZero 1 gcd
gcd-zeroʳ n = ∣-antisym gcd[n,1]∣1 1∣gcd[n,1]
where
gcd[n,1]∣1 = gcd[m,n]∣n n 1
1∣gcd[n,1] = 1∣ gcd n 1
gcd-zero : Zero 1 gcd
gcd-zero = gcd-zeroˡ , gcd-zeroʳ
gcd-universality : ∀ {m n g} →
(∀ {d} → d ∣ m × d ∣ n → d ∣ g) →
(∀ {d} → d ∣ g → d ∣ m × d ∣ n) →
g ≡ gcd m n
gcd-universality {m} {n} forwards backwards with back₁ , back₂ ← backwards ∣-refl
= ∣-antisym (gcd-greatest back₁ back₂) (forwards (gcd[m,n]∣m m n , gcd[m,n]∣n m n))
gcd[cm,cn]/c≡gcd[m,n] : ∀ c m n .{{_ : NonZero c}} → gcd (c * m) (c * n) / c ≡ gcd m n
gcd[cm,cn]/c≡gcd[m,n] c m n = gcd-universality forwards backwards
where
forwards : ∀ {d : ℕ} → d ∣ m × d ∣ n → d ∣ gcd (c * m) (c * n) / c
forwards {d} (d∣m , d∣n) = m*n∣o⇒n∣o/m c d (gcd-greatest (*-monoʳ-∣ c d∣m) (*-monoʳ-∣ c d∣n))
backwards : ∀ {d : ℕ} → d ∣ gcd (c * m) (c * n) / c → d ∣ m × d ∣ n
backwards {d} d∣gcd[cm,cn]/c
with cd∣gcd[cm,n] ← m∣n/o⇒o*m∣n (gcd-greatest (m∣m*n m) (m∣m*n n)) d∣gcd[cm,cn]/c
= *-cancelˡ-∣ c (∣-trans cd∣gcd[cm,n] (gcd[m,n]∣m (c * m) _)) ,
*-cancelˡ-∣ c (∣-trans cd∣gcd[cm,n] (gcd[m,n]∣n (c * m) _))
c*gcd[m,n]≡gcd[cm,cn] : ∀ c m n → c * gcd m n ≡ gcd (c * m) (c * n)
c*gcd[m,n]≡gcd[cm,cn] zero m n = P.sym gcd[0,0]≡0
c*gcd[m,n]≡gcd[cm,cn] c@(suc _) m n = begin
c * gcd m n ≡⟨ cong (c *_) (P.sym (gcd[cm,cn]/c≡gcd[m,n] c m n)) ⟩
c * (gcd (c * m) (c * n) / c) ≡⟨ m*[n/m]≡n (gcd-greatest (m∣m*n m) (m∣m*n n)) ⟩
gcd (c * m) (c * n) ∎
where open ≡-Reasoning
gcd[m,n]≤n : ∀ m n .{{_ : NonZero n}} → gcd m n ≤ n
gcd[m,n]≤n m n = ∣⇒≤ (gcd[m,n]∣n m n)
n/gcd[m,n]≢0 : ∀ m n .{{_ : NonZero n}} .{{gcd≢0 : NonZero (gcd m n)}} →
n / gcd m n ≢ 0
n/gcd[m,n]≢0 m n = m<n⇒n≢0 (m≥n⇒m/n>0 {n} {gcd m n} (gcd[m,n]≤n m n))
m/gcd[m,n]≢0 : ∀ m n .{{_ : NonZero m}} .{{gcd≢0 : NonZero (gcd m n)}} →
m / gcd m n ≢ 0
m/gcd[m,n]≢0 m n rewrite gcd-comm m n = n/gcd[m,n]≢0 n m
module GCD where
record GCD (m n gcd : ℕ) : Set where
constructor is
field
commonDivisor : gcd ∣ m × gcd ∣ n
greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ gcd
gcd∣m : gcd ∣ m
gcd∣m = proj₁ commonDivisor
gcd∣n : gcd ∣ n
gcd∣n = proj₂ commonDivisor
open GCD public
unique : ∀ {d₁ d₂ m n} → GCD m n d₁ → GCD m n d₂ → d₁ ≡ d₂
unique d₁ d₂ = ∣-antisym (GCD.greatest d₂ (GCD.commonDivisor d₁))
(GCD.greatest d₁ (GCD.commonDivisor d₂))
sym : ∀ {d m n} → GCD m n d → GCD n m d
sym g = is (swap $ GCD.commonDivisor g) (GCD.greatest g ∘ swap)
refl : ∀ {n} → GCD n n n
refl = is (∣-refl , ∣-refl) proj₁
base : ∀ {n} → GCD 0 n n
base {n} = is (n ∣0 , ∣-refl) proj₂
step : ∀ {n k d} → GCD n k d → GCD n (n + k) d
step {n} {k} {d} g with d₁ , d₂ ← GCD.commonDivisor g
= is (d₁ , ∣m∣n⇒∣m+n d₁ d₂) greatest′
where
greatest′ : ∀ {d′} → d′ ∣ n × d′ ∣ n + k → d′ ∣ d
greatest′ (d₁ , d₂) = GCD.greatest g (d₁ , ∣m+n∣m⇒∣n d₂ d₁)
open GCD public using (GCD) hiding (module GCD)
gcd-GCD : ∀ m n → GCD m n (gcd m n)
gcd-GCD m n = record
{ commonDivisor = gcd[m,n]∣m m n , gcd[m,n]∣n m n
; greatest = uncurry′ gcd-greatest
}
mkGCD : ∀ m n → ∃ λ d → GCD m n d
mkGCD m n = gcd m n , gcd-GCD m n
gcd? : (m n d : ℕ) → Dec (GCD m n d)
gcd? m n d =
Dec.map′ (λ { P.refl → gcd-GCD m n }) (GCD.unique (gcd-GCD m n))
(gcd m n ≟ d)
GCD-* : ∀ {m n d c} .{{_ : NonZero c}} → GCD (m * c) (n * c) (d * c) → GCD m n d
GCD-* {c = suc _} (GCD.is (dc∣nc , dc∣mc) dc-greatest) =
GCD.is (*-cancelʳ-∣ _ dc∣nc , *-cancelʳ-∣ _ dc∣mc)
λ {_} → *-cancelʳ-∣ _ ∘ dc-greatest ∘ map (*-monoˡ-∣ _) (*-monoˡ-∣ _)
GCD-/ : ∀ {m n d c} .{{_ : NonZero c}} → c ∣ m → c ∣ n → c ∣ d →
GCD m n d → GCD (m / c) (n / c) (d / c)
GCD-/ {m} {n} {d} {c} {{x}}
(divides-refl p) (divides-refl q) (divides-refl r) gcd
rewrite m*n/n≡m p c {{x}} | m*n/n≡m q c {{x}} | m*n/n≡m r c {{x}} = GCD-* gcd
GCD-/gcd : ∀ m n .{{_ : NonZero (gcd m n)}} → GCD (m / gcd m n) (n / gcd m n) 1
GCD-/gcd m n rewrite P.sym (n/n≡1 (gcd m n)) =
GCD-/ (gcd[m,n]∣m m n) (gcd[m,n]∣n m n) ∣-refl (gcd-GCD m n)
module Bézout where
module Identity where
data Identity (d m n : ℕ) : Set where
+- : (x y : ℕ) (eq : d + y * n ≡ x * m) → Identity d m n
-+ : (x y : ℕ) (eq : d + x * m ≡ y * n) → Identity d m n
sym : ∀ {d} → Symmetric (Identity d)
sym (+- x y eq) = -+ y x eq
sym (-+ x y eq) = +- y x eq
refl : ∀ {d} → Identity d d d
refl = -+ 0 1 P.refl
base : ∀ {d} → Identity d 0 d
base = -+ 0 1 P.refl
private
infixl 7 _⊕_
_⊕_ : ℕ → ℕ → ℕ
m ⊕ n = 1 + m + n
step : ∀ {d n k} → Identity d n k → Identity d n (n + k)
step {d} {n} (+- x y eq) with compare x y
... | equal x = +- (2 * x) x (lem₂ d x eq)
... | less x i = +- (2 * x ⊕ i) (x ⊕ i) (lem₃ d x eq)
... | greater y i = +- (2 * y ⊕ i) y (lem₄ d y n eq)
step {d} {n} (-+ x y eq) with compare x y
... | equal x = -+ (2 * x) x (lem₅ d x eq)
... | less x i = -+ (2 * x ⊕ i) (x ⊕ i) (lem₆ d x eq)
... | greater y i = -+ (2 * y ⊕ i) y (lem₇ d y n eq)
open Identity public using (Identity; +-; -+) hiding (module Identity)
module Lemma where
data Lemma (m n : ℕ) : Set where
result : (d : ℕ) (g : GCD m n d) (b : Identity d m n) → Lemma m n
sym : Symmetric Lemma
sym (result d g b) = result d (GCD.sym g) (Identity.sym b)
base : ∀ d → Lemma 0 d
base d = result d GCD.base Identity.base
refl : ∀ d → Lemma d d
refl d = result d GCD.refl Identity.refl
stepˡ : ∀ {n k} → Lemma n (suc k) → Lemma n (suc (n + k))
stepˡ {n} {k} (result d g b) =
subst (Lemma n) (+-suc n k) $
result d (GCD.step g) (Identity.step b)
stepʳ : ∀ {n k} → Lemma (suc k) n → Lemma (suc (n + k)) n
stepʳ = sym ∘ stepˡ ∘ sym
open Lemma public using (Lemma; result) hiding (module Lemma)
lemma : (m n : ℕ) → Lemma m n
lemma m n = build [ <′-recBuilder ⊗ <′-recBuilder ] P gcd″ (m , n)
where
P : ℕ × ℕ → Set
P (m , n) = Lemma m n
gcd″ : ∀ p → (<′-Rec ⊗ <′-Rec) P p → P p
gcd″ (zero , n) rec = Lemma.base n
gcd″ (m@(suc _) , zero) rec = Lemma.sym (Lemma.base m)
gcd″ (m′@(suc m) , n′@(suc n)) rec with compare m n
... | equal m = Lemma.refl m′
... | less m k = Lemma.stepˡ $ proj₁ rec (lem₁ k m)
... | greater n k = Lemma.stepʳ $ proj₂ rec (lem₁ k n) n′
identity : ∀ {m n d} → GCD m n d → Identity d m n
identity {m} {n} g with result d g′ b ← lemma m n rewrite GCD.unique g g′ = b