{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Relation.Binary.Permutation.Propositional
{a} {A : Set a} where
open import Data.List.Base using (List; []; _∷_)
open import Relation.Binary.Core using (Rel; _⇒_)
open import Relation.Binary.Bundles using (Setoid)
open import Relation.Binary.Structures using (IsEquivalence)
open import Relation.Binary.Definitions using (Reflexive; Transitive)
open import Relation.Binary.PropositionalEquality.Core using (_≡_; refl)
import Relation.Binary.Reasoning.Setoid as EqReasoning
open import Relation.Binary.Reasoning.Syntax
infix 3 _↭_
data _↭_ : Rel (List A) a where
refl : ∀ {xs} → xs ↭ xs
prep : ∀ {xs ys} x → xs ↭ ys → x ∷ xs ↭ x ∷ ys
swap : ∀ {xs ys} x y → xs ↭ ys → x ∷ y ∷ xs ↭ y ∷ x ∷ ys
trans : ∀ {xs ys zs} → xs ↭ ys → ys ↭ zs → xs ↭ zs
↭-reflexive : _≡_ ⇒ _↭_
↭-reflexive refl = refl
↭-refl : Reflexive _↭_
↭-refl = refl
↭-sym : ∀ {xs ys} → xs ↭ ys → ys ↭ xs
↭-sym refl = refl
↭-sym (prep x xs↭ys) = prep x (↭-sym xs↭ys)
↭-sym (swap x y xs↭ys) = swap y x (↭-sym xs↭ys)
↭-sym (trans xs↭ys ys↭zs) = trans (↭-sym ys↭zs) (↭-sym xs↭ys)
↭-trans : Transitive _↭_
↭-trans refl ρ₂ = ρ₂
↭-trans ρ₁ refl = ρ₁
↭-trans ρ₁ ρ₂ = trans ρ₁ ρ₂
↭-isEquivalence : IsEquivalence _↭_
↭-isEquivalence = record
{ refl = refl
; sym = ↭-sym
; trans = ↭-trans
}
↭-setoid : Setoid _ _
↭-setoid = record
{ isEquivalence = ↭-isEquivalence
}
module PermutationReasoning where
private module Base = EqReasoning ↭-setoid
open Base public
hiding (step-≈; step-≈˘; step-≈-⟩; step-≈-⟨)
renaming (≈-go to ↭-go)
open ↭-syntax _IsRelatedTo_ _IsRelatedTo_ ↭-go ↭-sym public
infixr 2 step-swap step-prep
step-prep : ∀ x xs {ys zs : List A} → (x ∷ ys) IsRelatedTo zs →
xs ↭ ys → (x ∷ xs) IsRelatedTo zs
step-prep x xs rel xs↭ys = relTo (trans (prep x xs↭ys) (begin rel))
step-swap : ∀ x y xs {ys zs : List A} → (y ∷ x ∷ ys) IsRelatedTo zs →
xs ↭ ys → (x ∷ y ∷ xs) IsRelatedTo zs
step-swap x y xs rel xs↭ys = relTo (trans (swap x y xs↭ys) (begin rel))
syntax step-prep x xs y↭z x↭y = x ∷ xs <⟨ x↭y ⟩ y↭z
syntax step-swap x y xs y↭z x↭y = x ∷ y ∷ xs <<⟨ x↭y ⟩ y↭z