------------------------------------------------------------------------ -- The Agda standard library -- -- Pointwise equality over lists using propositional equality ------------------------------------------------------------------------ -- Note think carefully about using this module as pointwise -- propositional equality can usually be replaced with propositional -- equality. {-# OPTIONS --cubical-compatible --safe #-} open import Relation.Binary.Core using (_⇒_) module Data.List.Relation.Binary.Equality.Propositional {a} {A : Set a} where open import Data.List.Base import Data.List.Relation.Binary.Equality.Setoid as SetoidEquality open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) import Relation.Binary.PropositionalEquality.Properties as P ------------------------------------------------------------------------ -- Re-export everything from setoid equality open SetoidEquality (P.setoid A) public ------------------------------------------------------------------------ -- ≋ is propositional ≋⇒≡ : _≋_ ⇒ _≡_ ≋⇒≡ [] = P.refl ≋⇒≡ (P.refl ∷ xs≈ys) = P.cong (_ ∷_) (≋⇒≡ xs≈ys) ≡⇒≋ : _≡_ ⇒ _≋_ ≡⇒≋ P.refl = ≋-refl