2.3. Composition of monos [000F]
Table of Contents
-
2.3.1.
The composition map
[000G]
-
2.3.2.
A naturality lemma
[000H]
If $X$, $Y$, $Z$ are objects of a topos $\ECat$, there exists a unique arrow from $\ObjMono{X}{Y}\times\ObjMono{Y}{Z}$ to $\ObjMono{X}{Z}$ factorizing the composition $\Con{C}$ from $Z\Sup{Y}\times Y\Sup{X}$ to $Z\Sup{X}$.
Proof. TODO
TODO