{-# OPTIONS --cubical-compatible --safe #-}
module Algebra.Solver.Ring.AlmostCommutativeRing where
open import Algebra
open import Algebra.Structures
open import Algebra.Definitions
import Algebra.Morphism as Morphism
import Algebra.Morphism.Definitions as MorphismDefinitions
open import Function.Base using (id)
open import Level
open import Relation.Binary.Core using (Rel)
record IsAlmostCommutativeRing {a ℓ} {A : Set a} (_≈_ : Rel A ℓ)
(_+_ _*_ : Op₂ A) (-_ : Op₁ A)
(0# 1# : A) : Set (a ⊔ ℓ) where
field
isCommutativeSemiring : IsCommutativeSemiring _≈_ _+_ _*_ 0# 1#
-‿cong : Congruent₁ _≈_ -_
-‿*-distribˡ : ∀ x y → ((- x) * y) ≈ (- (x * y))
-‿+-comm : ∀ x y → ((- x) + (- y)) ≈ (- (x + y))
open IsCommutativeSemiring isCommutativeSemiring public
record AlmostCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where
infix 8 -_
infixl 7 _*_
infixl 6 _+_
infix 4 _≈_
field
Carrier : Set c
_≈_ : Rel Carrier ℓ
_+_ : Op₂ Carrier
_*_ : Op₂ Carrier
-_ : Op₁ Carrier
0# : Carrier
1# : Carrier
isAlmostCommutativeRing : IsAlmostCommutativeRing _≈_ _+_ _*_ -_ 0# 1#
open IsAlmostCommutativeRing isAlmostCommutativeRing public
commutativeSemiring : CommutativeSemiring _ _
commutativeSemiring = record
{ isCommutativeSemiring = isCommutativeSemiring
}
open CommutativeSemiring commutativeSemiring public
using
( +-magma; +-semigroup
; *-magma; *-semigroup; *-commutativeSemigroup
; +-monoid; +-commutativeMonoid
; *-monoid; *-commutativeMonoid
; semiring
)
rawRing : RawRing _ _
rawRing = record
{ _≈_ = _≈_
; _+_ = _+_
; _*_ = _*_
; -_ = -_
; 0# = 0#
; 1# = 1#
}
record _-Raw-AlmostCommutative⟶_
{r₁ r₂ r₃ r₄}
(From : RawRing r₁ r₄)
(To : AlmostCommutativeRing r₂ r₃) : Set (r₁ ⊔ r₂ ⊔ r₃) where
private
module F = RawRing From
module T = AlmostCommutativeRing To
open MorphismDefinitions F.Carrier T.Carrier T._≈_
field
⟦_⟧ : Morphism
+-homo : Homomorphic₂ ⟦_⟧ F._+_ T._+_
*-homo : Homomorphic₂ ⟦_⟧ F._*_ T._*_
-‿homo : Homomorphic₁ ⟦_⟧ F.-_ T.-_
0-homo : Homomorphic₀ ⟦_⟧ F.0# T.0#
1-homo : Homomorphic₀ ⟦_⟧ F.1# T.1#
-raw-almostCommutative⟶ :
∀ {r₁ r₂} (R : AlmostCommutativeRing r₁ r₂) →
AlmostCommutativeRing.rawRing R -Raw-AlmostCommutative⟶ R
-raw-almostCommutative⟶ R = record
{ ⟦_⟧ = id
; +-homo = λ _ _ → refl
; *-homo = λ _ _ → refl
; -‿homo = λ _ → refl
; 0-homo = refl
; 1-homo = refl
}
where open AlmostCommutativeRing R
Induced-equivalence : ∀ {c₁ c₂ ℓ₁ ℓ₂} {Coeff : RawRing c₁ ℓ₁}
{R : AlmostCommutativeRing c₂ ℓ₂} →
Coeff -Raw-AlmostCommutative⟶ R →
Rel (RawRing.Carrier Coeff) ℓ₂
Induced-equivalence {R = R} morphism a b = ⟦ a ⟧ ≈ ⟦ b ⟧
where
open AlmostCommutativeRing R
open _-Raw-AlmostCommutative⟶_ morphism
fromCommutativeRing : ∀ {r₁ r₂} → CommutativeRing r₁ r₂ → AlmostCommutativeRing r₁ r₂
fromCommutativeRing CR = record
{ isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿cong = -‿cong
; -‿*-distribˡ = λ x y → sym (-‿distribˡ-* x y)
; -‿+-comm = ⁻¹-∙-comm
}
}
where
open CommutativeRing CR
open import Algebra.Properties.Ring ring
open import Algebra.Properties.AbelianGroup +-abelianGroup
fromCommutativeSemiring : ∀ {r₁ r₂} → CommutativeSemiring r₁ r₂ → AlmostCommutativeRing _ _
fromCommutativeSemiring CS = record
{ -_ = id
; isAlmostCommutativeRing = record
{ isCommutativeSemiring = isCommutativeSemiring
; -‿cong = id
; -‿*-distribˡ = λ _ _ → refl
; -‿+-comm = λ _ _ → refl
}
}
where open CommutativeSemiring CS