------------------------------------------------------------------------
-- The Agda standard library
--
-- Consequences of a monomorphism between ring-like structures
------------------------------------------------------------------------

-- See Data.Nat.Binary.Properties for examples of how this and similar
-- modules can be used to easily translate properties between types.

{-# OPTIONS --cubical-compatible --safe #-}

open import Algebra.Bundles
open import Algebra.Morphism.Structures
import Algebra.Morphism.GroupMonomorphism  as GroupMonomorphism
import Algebra.Morphism.MonoidMonomorphism as MonoidMonomorphism
open import Relation.Binary.Core

module Algebra.Morphism.RingMonomorphism
  {a b ℓ₁ ℓ₂} {R₁ : RawRing a ℓ₁} {R₂ : RawRing b ℓ₂} {⟦_⟧}
  (isRingMonomorphism : IsRingMonomorphism R₁ R₂ ⟦_⟧)
  where

open IsRingMonomorphism isRingMonomorphism
open RawRing R₁ renaming (Carrier to A; _≈_ to _≈₁_)
open RawRing R₂ renaming
  ( Carrier to B; _≈_ to _≈₂_; _+_ to _⊕_
  ; _*_ to _⊛_; 1# to 1#₂; 0# to 0#₂; -_ to ⊝_)

open import Algebra.Definitions
open import Algebra.Structures
open import Data.Product.Base using (proj₁; proj₂; _,_)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning

------------------------------------------------------------------------
-- Re-export all properties of group and monoid monomorphisms

open GroupMonomorphism +-isGroupMonomorphism public
  renaming
  ( assoc   to +-assoc
  ; comm    to +-comm
  ; cong    to +-cong
  ; idem    to +-idem
  ; sel     to +-sel
  ; ⁻¹-cong to neg-cong

  ; identity to +-identity; identityˡ to +-identityˡ; identityʳ to +-identityʳ
  ; cancel   to +-cancel;   cancelˡ   to +-cancelˡ;   cancelʳ   to +-cancelʳ
  ; zero     to +-zero;     zeroˡ     to +-zeroˡ;     zeroʳ     to +-zeroʳ

  ; isMagma             to +-isMagma
  ; isSemigroup         to +-isSemigroup
  ; isMonoid            to +-isMonoid
  ; isSelectiveMagma    to +-isSelectiveMagma
  ; isBand              to +-isBand
  ; isCommutativeMonoid to +-isCommutativeMonoid
  )

open MonoidMonomorphism *-isMonoidMonomorphism public
  renaming
  ( assoc to *-assoc
  ; comm  to *-comm
  ; cong  to *-cong
  ; idem  to *-idem
  ; sel   to *-sel

  ; identity to *-identity; identityˡ to *-identityˡ; identityʳ to *-identityʳ
  ; cancel   to *-cancel;   cancelˡ   to *-cancelˡ;   cancelʳ   to *-cancelʳ
  ; zero     to *-zero;     zeroˡ     to *-zeroˡ;     zeroʳ     to *-zeroʳ

  ; isMagma             to *-isMagma
  ; isSemigroup         to *-isSemigroup
  ; isMonoid            to *-isMonoid
  ; isSelectiveMagma    to *-isSelectiveMagma
  ; isBand              to *-isBand
  ; isCommutativeMonoid to *-isCommutativeMonoid
  )

------------------------------------------------------------------------
-- Properties

module _ (+-isGroup : IsGroup _≈₂_ _⊕_ 0#₂ ⊝_)
         (*-isMagma : IsMagma _≈₂_ _⊛_) where

  open IsGroup +-isGroup hiding (setoid; refl; sym)
  open IsMagma *-isMagma renaming (∙-cong to ◦-cong)
  open SetoidReasoning setoid

  distribˡ : _DistributesOverˡ_ _≈₂_ _⊛_ _⊕_  _DistributesOverˡ_ _≈₁_ _*_ _+_
  distribˡ distribˡ x y z = injective (begin
     x * (y + z)                ≈⟨ *-homo x (y + z) 
     x    y + z              ≈⟨ ◦-cong refl (+-homo y z) 
     x   ( y    z )       ≈⟨ distribˡ  x   y   z  
     x    y    x    z  ≈⟨ ∙-cong (*-homo x y) (*-homo x z) 
     x * y    x * z          ≈⟨ +-homo (x * y) (x * z) 
     x * y + x * z  )

  distribʳ : _DistributesOverʳ_ _≈₂_ _⊛_ _⊕_  _DistributesOverʳ_ _≈₁_ _*_ _+_
  distribʳ distribˡ x y z = injective (begin
     (y + z) * x                ≈⟨ *-homo (y + z) x 
     y + z    x              ≈⟨ ◦-cong (+-homo y z) refl 
    ( y    z )   x        ≈⟨ distribˡ  x   y   z  
     y    x    z    x  ≈⟨ ∙-cong (*-homo y x) (*-homo z x) 
     y * x    z * x          ≈⟨ +-homo (y * x) (z * x) 
     y * x + z * x  )

  distrib : _DistributesOver_ _≈₂_ _⊛_ _⊕_  _DistributesOver_ _≈₁_ _*_ _+_
  distrib distrib = distribˡ (proj₁ distrib) , distribʳ (proj₂ distrib)

  zeroˡ : LeftZero _≈₂_ 0#₂ _⊛_  LeftZero _≈₁_ 0# _*_
  zeroˡ zeroˡ x = injective (begin
     0# * x      ≈⟨ *-homo 0# x 
     0#    x  ≈⟨ ◦-cong 0#-homo refl 
    0#₂   x     ≈⟨ zeroˡ  x  
    0#₂            ≈⟨ 0#-homo 
     0#          )

  zeroʳ : RightZero _≈₂_ 0#₂ _⊛_  RightZero _≈₁_ 0# _*_
  zeroʳ zeroʳ x = injective (begin
     x * 0#      ≈⟨ *-homo x 0# 
     x    0#  ≈⟨ ◦-cong refl 0#-homo 
     x   0#₂    ≈⟨ zeroʳ  x  
    0#₂            ≈⟨ 0#-homo 
     0#          )

  zero : Zero _≈₂_ 0#₂ _⊛_  Zero _≈₁_ 0# _*_
  zero zero = zeroˡ (proj₁ zero) , zeroʳ (proj₂ zero)

  neg-distribˡ-* : (∀ x y  ( (x  y)) ≈₂ (( x)  y))  (∀ x y  (- (x * y)) ≈₁ ((- x) * y))
  neg-distribˡ-* neg-distribˡ-* x y = injective (begin
     - (x * y)      ≈⟨ -‿homo (x * y) 
      x * y        ≈⟨ ⁻¹-cong (*-homo x y) 
     ( x    y ) ≈⟨ neg-distribˡ-*  x   y  
      x    y    ≈⟨ ◦-cong (sym (-‿homo x)) refl 
     - x    y    ≈⟨ sym (*-homo (- x) y) 
     - x * y        )

  neg-distribʳ-* : (∀ x y  ( (x  y)) ≈₂ (x  ( y)))  (∀ x y  (- (x * y)) ≈₁ (x * (- y)))
  neg-distribʳ-* neg-distribʳ-* x y = injective (begin
     - (x * y)      ≈⟨ -‿homo (x * y) 
      x * y        ≈⟨ ⁻¹-cong (*-homo x y) 
     ( x    y ) ≈⟨ neg-distribʳ-*  x   y  
     x     y    ≈⟨ ◦-cong refl (sym (-‿homo y)) 
     x    - y    ≈⟨ sym (*-homo x (- y)) 
     x * - y        )

isRing : IsRing _≈₂_ _⊕_ _⊛_ ⊝_ 0#₂ 1#₂  IsRing _≈₁_ _+_ _*_ -_ 0# 1#
isRing isRing = record
  { +-isAbelianGroup = isAbelianGroup R.+-isAbelianGroup
  ; *-cong           = *-cong R.*-isMagma
  ; *-assoc          = *-assoc R.*-isMagma R.*-assoc
  ; *-identity       = *-identity R.*-isMagma R.*-identity
  ; distrib          = distrib R.+-isGroup R.*-isMagma R.distrib
  } where module R = IsRing isRing

isCommutativeRing : IsCommutativeRing _≈₂_ _⊕_ _⊛_ ⊝_ 0#₂ 1#₂ 
                    IsCommutativeRing _≈₁_ _+_ _*_ -_ 0# 1#
isCommutativeRing isCommRing = record
  { isRing = isRing C.isRing
  ; *-comm = *-comm C.*-isMagma C.*-comm
  } where module C = IsCommutativeRing isCommRing