Assignment 6 Hand in date: Wed Nov 16

Exercise 1. Let \mathbb{C} and \mathbb{D} be two categories and assume \mathbb{D} has pullbacks. Let $F, G : \mathbb{C} \to \mathbb{D}$ be functors. Show that a natural transformation $\alpha : F \to G$ is a monomorphism *if and only if* each of the components $\alpha_c : F(c) \to G(c)$ is a monomorphism in \mathbb{D} .

Exercise 2. Let **FinSets** be the category of finite sets and functions. Let ω be the ordered set of natural numbers with the usual order

 $0 \le 1 \le 2 \le 3 \le \cdots$

1. Show that the category $FinSets^{\omega^{op}}$ is cartesian closed.

Hint: follow the general construction of exponents in $\mathbf{Sets}^{\omega^{\mathrm{op}}}$ and show it restricts to $\mathbf{FinSets}^{\omega^{\mathrm{op}}}$.

 Show that the category **FinSets**^ω *is not* cartesian closed. Hint: Consider the object N defined as

 $[0] \hookrightarrow [1] \hookrightarrow [2] \hookrightarrow [3] \hookrightarrow \cdots$

where [n] is the set $\{0, 1, ..., n\}$ and all arrows are subset inclusions. Then consider the sets Hom(N, 2) and $Hom(1, 2^N)$ assuming the exponential object 2^N exists. The object 2 is as usual 1 + 1.

You may assume that all *finite* limits exist in both **FinSets**^{ω^{op}} and **FinSets**^{ω} and that they are given pointwise as in **Sets**^{ω^{op}} and **Sets**^{ω}.

Remark 1. The second item of the preceding exercise shows that even if \mathbb{D} is cartesian closed and has all finite limits it need not be the case that $\mathbb{D}^{\mathbb{C}}$ is cartesian closed.

Exercise 3. Let Sets be the category of sets and functions and A a set. Does the functor

Hom (A, -): Sets \rightarrow Sets

have a left adjoint? Does it have a right adjoint? If they exist describe them, and if not prove it.