Assignment 1 Hand in date: Wed Sep 14

Exercise 1. Let T_0 send a set X to its power set $\mathcal{P}(X)$, and let T_1 send a function $f: X \to Y$ to the image function

$$T_1(f): T_0X \to T_0Y$$
,

which is defined as

$$T_1(f)(A) = \{ f(x) \mid x \in A \}$$

Show that $T = (T_0, T_1)$ is a functor from **Sets** to **Sets**.

Exercise 2. Define the category \mathbb{K} as follows. Its objects are sets. Morphisms $X \to Y$ in \mathbb{K} are morphisms $X \to T(Y)$ in **Sets**, i.e.,

$$\mathbf{Hom}_{\mathbb{K}}(X,Y) = \mathbf{Hom}_{\mathbf{Sets}}(X,T(Y)).$$

Composition is defined as follows: if $f: X \to Y$ and $g: Y \to Z$ are two morphisms in \mathbb{K} then

$$(g \circ f)(x) = \bigcup_{y \in f(x)} g(y) = \{z \mid \exists y \in f(x), z \in g(y)\}.$$

- Show that **K** is a category.
- Show that it is isomorphic to the category of sets and relations **Rel**. Hint: Any subset $R \subseteq X \times Y$ can be represented as a function $F(R): X \to \mathcal{P}(Y)$ defined as

$$F(R)(x) = \{ y \mid (x, y) \in R \}.$$

Exercise 3. Let \mathbb{C} be a category with binary products.

- Is the projection $\pi_X: X \times Y \to X$ an epimorphism in general? Is it a monomorphism?
- Let $f: Z \to X$, $g: Z \to Y$, and $h: W \to Z$ be three morphisms. Show

$$\langle f, g \rangle \circ h = \langle f \circ h, g \circ h \rangle$$

as morphisms $W \to X \times Y$.

• Let $f: Z \to X$ and $g: W \to Y$ be two morphisms. Show there *exists* a *unique* morphism $u: Z \times W \to X \times Y$ such that for all objects A and morphisms $h_Z: A \to Z$ and $h_W: A \to W$

$$u\circ\langle h_Z,h_W\rangle=\big\langle f\circ h_Z,g\circ h_W\big\rangle.$$

as morphisms $A \to X \times Y$. This unique morphism u is typically written as $f \times g$.

• Using the notation from the previous item, show that for any morphisms $f: Z \to X, g: W \to Y, h: A \to Z$, and $k: B \to W$ we have

$$(f \times g) \circ (h \times k) = (f \circ h) \times (g \circ k)$$

as morphisms $A \times B \rightarrow X \times Y$.