Assignment 1
 Hand in date: Wed Sep 14

Exercise 1. Let T_{0} send a set X to its power set $\mathcal{P}(X)$, and let T_{1} send a function $f: X \rightarrow Y$ to the image function

$$
T_{1}(f): T_{0} X \rightarrow T_{0} Y
$$

which is defined as

$$
T_{1}(f)(A)=\{f(x) \mid x \in A\}
$$

Show that $T=\left(T_{0}, T_{1}\right)$ is a functor from Sets to Sets.
Exercise 2. Define the category \mathbb{K} as follows. Its objects are sets. Morphisms $X \rightarrow Y$ in \mathbb{K} are morphisms $X \rightarrow T(Y)$ in Sets, i.e.,

$$
\operatorname{Hom}_{\mathbb{K}}(X, Y)=\operatorname{Hom}_{\text {Sets }}(X, T(Y)) .
$$

Composition is defined as follows: if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are two morphisms in \mathbb{K} then

$$
(g \circ f)(x)=\bigcup_{y \in f(x)} g(y)=\{z \mid \exists y \in f(x), z \in g(y)\}
$$

- Show that \mathbb{K} is a category.
- Show that it is isomorphic to the category of sets and relations Rel.

Hint: Any subset $R \subseteq X \times Y$ can be represented as a function $F(R): X \rightarrow \mathcal{P}(Y)$ defined as

$$
F(R)(x)=\{y \mid(x, y) \in R\} .
$$

Exercise 3. Let \mathbb{C} be a category with binary products.

- Is the projection $\pi_{X}: X \times Y \rightarrow X$ an epimorphism in general? Is it a monomorphism?
- Let $f: Z \rightarrow X, g: Z \rightarrow Y$, and $h: W \rightarrow Z$ be three morphisms. Show

$$
\langle f, g\rangle \circ h=\langle f \circ h, g \circ h\rangle
$$ as morphisms $W \rightarrow X \times Y$.

- Let $f: Z \rightarrow X$ and $g: W \rightarrow Y$ be two morphisms. Show there exists a unique morphism $u: Z \times W \rightarrow X \times Y$ such that for all objects A and morphisms $h_{Z}: A \rightarrow Z$ and $h_{W}: A \rightarrow W$

$$
u \circ\left\langle h_{Z}, h_{W}\right\rangle=\left\langle f \circ h_{Z}, g \circ h_{W}\right\rangle .
$$

as morphisms $A \rightarrow X \times Y$. This unique morphism u is typically written as $f \times g$.

- Using the notation from the previous item, show that for any morphisms $f: Z \rightarrow X, g$: $W \rightarrow Y, h: A \rightarrow Z$, and $k: B \rightarrow W$ we have

$$
(f \times g) \circ(h \times k)=(f \circ h) \times(g \circ k)
$$

as morphisms $A \times B \rightarrow X \times Y$.

